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Analysis and Quantification of Repetitive Motion in
Long-Term Rehabilitation

Loreen Pogrzeba, Thomas Neumann, Markus Wacker, and Bernhard Jung

Abstract—Objective assessment in long-term rehabilitation
under real-life recording conditions is a challenging task. We
propose a data-driven method to evaluate changes in motor
function under uncontrolled, long-term conditions with the low-
cost Microsoft Kinect Sensor. Instead of using human ratings as
ground truth data, we propose kinematic features of hand motion,
healthy reference trajectories derived by principal component
regression, and methods from machine learning to analyze the
progression of motor function. We demonstrate the capability of
this approach on datasets with repetitive unrestrained bi-manual
drumming movements in 3-dimensional space of stroke survivors,
patients suffering of Parkinson’s disease, and a healthy control
group. We present processing steps to eliminate the influence
of varying recording setups under real-life conditions and offer
visualization methods to support clinicians in the evaluation of
treatment effects.

Index Terms—depth sensor, human motion, kinematic features,
rehabilitation, movement quality assessment.

I. INTRODUCTION

NEUROLOGICAL deficits as a consequence of a stroke or
Parkinson’s disease have sustained impact on daily life.

They entail symptoms such as reduced mobility, paralysis or
rigidity of limbs, higher risk of falling and pain. The need
for long-term rehabilitation is apparent, as stroke is “a major
cause of long-term disability” [1] and Parkinson’s disease as
a chronic disease involves deterioration of symptoms.

The advent of low-cost, mobile, and easily applicable mark-
erless motion recording systems like the Microsoft Kinect
depth sensor (short: Kinect sensor) opens up new fields of
application in therapy and rehabilitation, especially in elderly
care, stroke rehabilitation, and exergaming [2], [3]. Current
research focuses mainly on interdisciplinary short-term studies
under controlled laboratory conditions, with motion analysis
results being correlated with qualitative clinical assessment
scales as gold standard. However assessment scales are depen-
dent on the ratings and experience of the evaluators, thus can
be subjectively distorted [4]. They may not coercively correlate
with the results from motion analysis, because the chosen
scales could be too coarse or too general, thus not responsive
enough for long-term tracking of symptoms or motor changes
[5], [6], [7].
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In addition, previous studies in rehabilitation often focus
on uni-directional trajectories, for example reaching move-
ments with predefined start and end points in space. Real-life
rehabilitation settings are usually much less constrained, con-
taining unpredictable reaching targets in space and potentially
asymmetric execution (forward and backward motion). Few
studies have explored such a real-life rehabilitation setting.
Here, we exemplarily study the quantification of repetitive
motion from recordings of treatment sessions with function
oriented music therapy (FMT). FMT is a non-verbal neuro-
muscular therapy based on repetitive drumming movements in
changing setups of instrumentation [8], [9]. FMT is targeted
to treat diverse neurological deficits, such as stroke (S) and
Parkinson’s disease (PD). In a long-term rehabilitation setting
like this, the aim is not to detect diseases at an early stage,
but instead to offer computational tools that help monitoring
the rehabilitation progress as unobtrusively as possible.

Such a real-life scenario poses several technical and method-
ological challenges: we require a method of normalization
that allows for an analysis not only invariant under varying
recording conditions, but also invariant to changing motion
tasks during therapy. Classical approaches record motion from
an impaired patient group (PG) and compare it to data of a
healthy control group (HG) [3], [10]–[13].

To monitor and quantify long-term rehabilitation progress,
the quality (the “healthiness”) of a given motion needs to be
estimated from kinematic features. To obtain such a measure,
we propose a model that predicts a probability between
“healthy” and “impaired” from the kinematic features of a
given motion. The model thus provides a continuous score
of “healthiness” as a corridor of accepted motor function.
Notably, this model is trained only from sets of healthy and
impaired motion. It does not require subjective and potentially
distorted therapist scores for calibration. Monitoring the model
scores in an ongoing therapy allows us to estimate the recovery
of the patient. We show that, both for stroke and Parkinson’s
patients, model scores successfully quantify the tendency of
rehabilitation of a patient. A therapist in practice could thus
use our model to quickly check whether symptoms improve
or even disappear over the course of long-term therapy.

In summary, our contributions are:

1) We describe a framework for recording, automatic cal-
ibration, and analysis of repetitive motion in real-life
conditions. We build a reference trajectory model to
correct for varying setups and propose three kinematic
features that quantify variability and consistency of a
given repetitive reaching/drumming motion.
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2) We show that a probabilistic model trained from a set
of “healthy” and “impaired” motion can be used to
monitor the recovery of patients towards “healthier”
motion during long-term therapy.

3) Our study is the first to offer a computational, motion
data based assessment of rehabilitation success of FMT,
based on a novel dataset of drumming motion recorded
in unconstrained therapy sessions. We quantify the mo-
tion of both stroke and Parkinson’s patients.

II. RELATED WORK

Motion analysis, in particular quantification of motion qual-
ity, have been studied in various contexts: for personalized
rehabilitation systems [6], [14], ergonomics [15], [16], for
measuring motor symptoms of Parkinson [10], [17], [18] and
stroke patients [5], [11]. For our specific use case in FMT,
therapeutic observation criteria have been transferred [8], but
not yet evaluated for automatic motion analysis. Current re-
search in motion quantification is oriented towards establishing
correlations between kinematic features and human ratings
(e.g., the Wolf Motor Function Test (WMFT) [12] for stroke
survivors) to build evaluative or predictive models. In contrast
to such disease-specific motor performance scores, we ana-
lyze drumming motion during unconstrained, long-term music
therapy by implicitely modeling a “healthyness” score without
relying on human ratings. Note that drumming movements can
be seen as compositions of multiple reaching tasks, therefore
our framework also generalizes to motion analysis for reaching
tasks and hopefully inspires future work also in this context.

To measure human motion, most studies rely on expensive
marker-based systems. Recently, low-cost sensors such as the
Kinect sensor have been shown to achieve comparable results
[19]–[21] in various applications settings [2], [3], [22], [23].
We argue that the use of such a sensor in a real-life reha-
bilitation setting not only poses big challenges due to sensor
noise and limited accuracy, but also causes problems due to
uncontrolled recording conditions that have to be factored into
the analysis framework. Our framework normalizes the data
even in such uncontrolled setups.

To analyze the movements recorded from multiple subjects,
many existing approaches explore the use of kinematic features
for assessing movement quality: Venkataraman et al. [6] use
curvedness, speed, and jerkiness; Das et al. [17] use frequency-
domain features to measure tremor; Chen et al. [11] explore
features such as temporal, velocity, and trajectory profiles;
Adams et al. [24] analyze duration, normalized speed, and
movement arrest period ratio. These kinematic features are
usually combined to predict movement quality scores using
machine learning. Leightley et al. [25] evaluate machine
learning methods to first classify motion type, then compute
deviations from a healthy control group to label movements as
“good” or “poor”. Mostafavi et al. [26] extensively analyze the
relationships between kinematic features and clinical scores
for reaching, matching, and object hit tasks in stroke survivors.

We extend the general idea of interpretable kinematic fea-
tures in the case of drumming motion, for measuring long-term
rehabilitation effects, and for a patient group with a very wide

spectrum of characteristics poststroke and with Parkinson’s
disease.

The methods mentioned above typically learn a mapping
directly from kinematic features to therapist ratings from a
dataset of impaired and healthy patients that perform the same
motion. Essentially, healthy motion is modeled in the kine-
matic feature space. As an alternative, some methods model
healthy trajectories directly: For example, Olesh et al. [5]
model motor function of the non-paretic (healthy) arm using
Principal Component Analysis (PCA), reconstruct the other
hand motion within this PCA space, and measure the differ-
ence (and vice versa). This gives a quantitative scale that works
well for patients with hemiparesis, but it strongly fluctuates
over movement types. Models that decompose motion into
sparsely-activated motor primitives can also be used, e.g.,
to reveal problems in coordination [18]. Burget et al. [10]
train a mathematical model of individual joint motion and
show reduced activation of proximal joints for PD patients.
Som et al. [27] generate an “optimal” trajectory syntheti-
cally as the shortest geodesic on a manifold that respects
motion specific constraints of the human body. This allows
for completely unsupervised modeling of motion, but cannot
capture factors such as acceleration and energy efficiency,
factors which are important for modeling natural human
motion. Trajectories generated from recorded data overcome
this limitation, for example by fitting Bezier curves to MoCap
data [16] or by generating human gait trajectories based on
variables such as gender [28] in a data-driven way. We argue
that generative models like these can be used to factor external
variables in reaching movements (such as start/end point),
and show how such a model can be tied to the construction
of kinematic features, thereby enabling real-life long-term
rehabilitation analysis and monitoring without interfering with
therapists.

III. FRAMEWORK DESIGN

To quantify human movements over uncontrolled long-
term treatment we present a framework which utilizes four
steps. First, the trajectories are transformed into a uniform
spatial representation to allow consistent analysis also under
varied spatial recording conditions. Second, a reference model
is built which synthesises healthy trajectories depending on
the parameters of the recorded impaired movements. Third,
kinematic parameters are calculated and forth, used for the
estimation of treatment effect.

A. Representation of Trajectories
Skeletal data consists of a time-ordered sequence of joint

positions in Cartesian space, also named as trajectories. Let
{pj(t) ∈ R3, t ∈ T } denote a set of joint trajectories at mea-
sured time points T ⊂ R+ and for different joints j ∈ J .
For our use case we analyze the movements of two joints of
interest, J = {lh, rh}, namely the left (lh) and right hand
(rh). We define repetitive drumming actions as composed
movements, which are built from a number of repetitive
reaching actions r (cf. Fig. 1a). For a 2-drum-setup we arrange
two reaching actions in a single motion cycle (cf. Fig. 1b) and
combine ten motion cycles to a set.
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Fig. 1. (a) Schematic representation of reaching trajectories ri (i ∈ N) of one
skeletal joint j (here, one of the hands) in camera coordinates for a 2-drum-
setup. (b) Exemplary position-time graph, with continuous reaching actions
ri across time t for a 2-drum-setup. The reaching actions start and end in
points of time labeled with onsets ok (k ∈ N) and are combined into motion
cycles ml (l ∈ N).

B. Registration of Onsets

Drumming movements are decomposed into R ∈ N+ reach-
ing actions. Each reach starts (onset) and ends (offset) when
a drum is hit, i.e., at the distinct points in time O ⊂ T , with
O = {o1, o2, . . . , oR}. Since drumming continues immediately
after a hit, onsets and offsets coincide in our scenario. Con-
sequently, in a 2-drum-setup where the patient hits each drum
alternately, we have the “odd” onsets where the first drum is
hit, Tfirst = {o1, o3, . . . , oR−1} (cf. Fig. 1b), and the “even”
onsets when the second drum is hit Tsecond = {o2, o4, . . . , oR}.
Each hand can be modeled separately in this way, even if both
hands participate in drumming. An example is shown in Fig. 5:
although three drums are involved, each hand is alternating
between the center and one of the outer drums, thus each
hand still performs a 2-drum motion.

For our datasets (cf. Sec. IV-A) we register onsets manually
based on the image data. We here look at symmetric drumming
motion, so we select one onset for both hands: if the impaired
hand (left or right) is known, we register the onset of the
healthy hand. Otherwise (e.g., for healthy subjects) we take the
frame where both hands are at minimal y-position. If the hands
move asymmetrically, this will influence the trajectories’ shape
after processing (as described next), consequently making this
asymmetry detectable by kinematic features (see III-E).

C. Processing

We use a five-step, fully automated processing and cali-
bration routine to transform raw motion data into a unified
trajectory representation. First, we use a Savitzky-Golay filter
of order 3 following [29] to smooth the movements. Second,
we correct for varying height of the sensor, which possibly
arised during recording of different sessions: The height of the
sensor influences the pitch angle in camera space, so we need
to perform a rotation Rx around the x-axis by the angle θ.
To determine θ we measure the angle between the unit vector
y = [0,1,0]⊺ and the spine (gray lines in Fig. 2) at the start
of the motion cycles, at Tfirst, where we can assume the
“most upright” posture. Averaging over all sets within one
setup gives a robust estimate of the actual pitch of the sensor,
cf. Fig. 2b, without requiring any manual calibration effort.
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Fig. 2. Upper body joints in side view at odd onsets in (a) with different
orientations due to varied recording conditions before and in (b) with matching
orientation after processing. Spine joints in gray, left/right body side in
blue/red, respectively.
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Fig. 3. (a) Captured (real) drumming trajectories of the left (blue) and right
(red) hand joints of the patient group (PG) and (b) predicted trajectories of
healthy subjects from the spatial coordinates of the PG in 3d.

Third, drumming trajectories for each joint are translated so
that they start at the origin. Fourth, reaches are resampled
to obtain T̂ = 16 equally spaced sample points from the raw
trajectory, using cubic spline interpolation. This corresponds to
the average sample rate of 29.8 Hz of the raw data and so the
resampled trajectories reproduce the actual motion trajectory
with high fidelity, cf. Fig. 4. Fifth, motion cycles are combined
into sets. After this, all motion cycles start and end in the origin
as depicted in, e.g., Fig. 3. This pipeline would also work for
joint angles, but here we chose the trajectory representation
of motion, as it is commonly used in the context of reaching
and rehabilitation [6], [11], [14], [17]. Trajectories preserve the
spatial conditions of the reaching actions, are easily visualized
and lend themselves to application of scoring principles of the
widely used WMFT [12] assessment for stroke survivors.

D. Reference Trajectory Model

The preprocessing so far cannot sufficiently level out dif-
ferences in the shape of the trajectories, which might be
significantly different depending on the actual 3d location of
the drums or, in general, of any reaching target [30], [31].
This is also clearly visible in Fig. 3a. Instead of forcing the
therapists to place the drums exactly in the same 3d location
for every patient to make patients comparable, we propose
to train a model that synthesizes reference trajectories from
an additional dataset, named “Setup Variation” (SV). In this
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(a) All impaired subjects (PG).
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(b) All healthy subjects (HG).
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(c) Subject S8 from patient group (PG) after 19 weeks of treatment.
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(d) Subject S28 from healthy group (HG).

Fig. 4. Real (top row, green), predicted (middle row, blue) and subtracted (bottom row, red) position data per patient group and for selected single subjects.
Each row contains trajectories of two reaches in x, y and z direction, which were resampled to contain T̂ time steps per reach. Vertical dotted lines indicate
onsets of reaches. Circle markers indicate points in time, where variability features are calculated.

dataset, a part of variant features of a reaching or drumming
setup is reproduced and systematically changed by healthy
subjects.

From this, a model is learnt for a specific joint j from NSV

recorded trajectories that all went to different drum positions.
As described previously, reach trajectories are preprocessed
and resampled to contain T̂ time steps. This allows us to
collect all reaches into matrix X

(j)
SV ∈ RNSV ×6T̂−3, with each

row containing the 3d positions of two reaches per motion
cycle with forward and backward motion for the 2-drum-
setup. The offset of 3 counts for onsets Tsecond (in Fig. 4 at
times T̂ ), that are part of multiple reaches, i.e., ending points
of forward reaches and starting points of backward reaches.
We then decompose the healthy trajectories into K principal
components ck ∈ R6T̂−3 and weights wk ∈ RNSV ,

XSV ≈ (xmean)⊺ +
K

∑
k=1

wk (ck)⊺ . (1)

Linear regression is used to model the relationship between
PCA weights and variable parameters, so that wk ≈ YSV βββk.
In our case, YSV ∈ RNSV ×4 contains the 3d joint positions at
the even onsets, Tsecond, as a proxy for the real drum position
in 3d space, plus a constant to model the linear regression
bias. To prevent overfitting and to increase robustness to
outliers, we collect multiple (here, ten) motion cycles for each
drum position in YSV and average the resampled trajectories
in XSV . After learning βββk, we can synthesize a trajectory
x̄ ∈ R6T̂−3 for any given target drum location y ∈ R4 (values
for x, y, z, and a constant), thereby generating a trajectory that
“simulates” healthy drumming to that target location by:

x̄ = xmean +
K

∑
k=1

y⊺βββkck . (2)

Fig. 3 contrasts the real trajectories of the patient group (a)
with predicted reference trajectories x̄ computed using Eq. (2)
in (b). We can now subtract the reference trajectory from the
patient data to even better reveal the irregularities visible in
Fig. 3a, which is what we will show next. At first glance,
this idea seems specific to our drumming use-case, but in fact,
it can be easily extended simply by adding more columns to
YSV (e.g., location of a second drum, walking speed for gait
analysis, etc.). The reference model is also invariant under
specific motion representation, joint angles in matrix XSV

would also work.

E. Kinematic Features

We evaluate motor changes over long-term treatment with
the help of three groups of kinematic features. The features f
are calculated per set, for each joint j ∈ J = {lh, rh}, for all
subjects and sets of the patient group (PG) and healthy group
(HG). They are collected in the matrix F ∈ RNPG+HG×2F ,
where NPG+HG denotes the number of sets contained in the
datasets (PG, HG) and there are F features for each joint.
The features are inspired by criteria of the Functional Ability
Scale, which is often used in stroke assessment as a part of
WMFT. It rates amongst others completion time, precision
and fine coordination of the upper extremity [32]. The first
two features are also motivated by the research of Cirstea
and Levin [33], who observed that pointing movements of
stroke survivors involve increased movement variability and
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more widely distributed end-point positions. In our work, we
also assume higher variability in movements for impaired
subjects, in particular: (i) at the end of the reaches supported
by [33], [11], (ii) at the mid-time of the reaches, because
this is the most undefined portion of the movement without
any movements requirements concerning, e.g., reaching height,
(iii) in total over the full trajectory. With these ideas in mind,
we propose three groups of features:

1) Consistency with predicted healthy trajectories: We
measure how consistently our reference model can predict the
impaired trajectories for every set from the spatial parameters
YPG,HG. Fig. 4c shows this procedure exemplarily for one
subject of the PG, Fig. 4d for one subject of the HG. The
measured and predicted trajectories are subtracted from each
other and on the resulting difference the variance (VAR), mean
absolute deviation (MAD), and median absolute deviation
(MED) are calculated over the time frames mentioned in (i)-
(iii) per joint. These features are summed over x, y, z-positions
per joint and are normalized with the averaged spatial distance
between instruments. We expect the differences between real
and predicted trajectories to be higher and more fluctuating
for impaired subjects than for healthy ones.

2) Variability of trajectories: With similar motivation as
above, we calculate the variability features (VAR, MAD,
MED) on the measured trajectories directly. This captures the
variability within multiple repetitions of the same motion.

3) Deviation from bell-shaped speed profile: Flash and
Hogan observed in [34] a symmetrical bell-shaped speed
profile for reaching actions with a peak velocity in the mid-
time of the movement. Chen et al. [11] fit a Gaussian curve to
the speed profiles of trajectories and measure the fitting error.
It turned out that this procedure is not robust enough for our
data, as the fit is sometimes not possible for too divergent
speed profiles especially in the reversal movements, so we
assess the deviation from the bell-shaped speed profile by two
methods: We either fit a Gaussian curve and take the peak on
the fitted curve, following [11], setting a constant value if this
is not successful (e.g., a flat trajectory curves where the center
of the Gaussian cannot be estimated). Alternatively, the peak
velocity is directly estimated from the trajectory. To construct
the feature from this, the peak velocity (either from Gaussian
fit or from the direct method) is summed for odd and even
reaches over all motion cycles of a set.

F. Estimation of Treatment Effect

To estimate a treatment effect, we predict a “healthiness”
score from the kinematic features. Instead of correlating fea-
tures with human ratings to obtain the score, we train a model
that estimates the probability p(y = PG∣F) of a motion to
be “healthy” or “impaired” (i.e., belonging to the PG) given
features F of that motion. Depending on the kind and severity
of the disease, we expect that the probabilities of the PG
change over the progress of the treatment. This change in
probability is used to quantify the treatment effect of a patient:
If the probabilities of belonging to the patient group, p(y =
PG∣F), do not change, we would deduce that treatment had no
effect on the motor function. If the probability decreases, we

(a) Patient group (b) Healthy group (c) Setup variation

Fig. 5. Representative images acquired by Kinect sensor in different datasets.
Please note the variation in the sensor placement, subject’s location and
distribution of instrumentation.
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Fig. 6. Recording area in dataset with controlled setup variation (SV), with
varying positions of outer cymbals.

assume positive effects of the treatment on the motor function.
An increasing probability hints at a deterioration of motor
function, e.g., due to degenerative processes from the disease
and/or ineffective treatment.

For training the model that predicts p, we use motion of the
HG (y ≠ PG) and only the first treatment sessions of the PG
(y = PG). In these first sessions, treatment effect did not yet
kick in and motion can definitely be rated as “impaired” due to
a verified diagnosis that lead to the therapy in the first place.
For prediction of p from F, non-probabilistic methods such
as SVMs would be possible, but require additional calibration
of probabilities on a separate validation set (cf. [35], [36]),
which we lack due to the small size of our datasets. Decision
trees are another alternative, but provide accurate probability
calculation only for very large datasets. For these reasons,
probabilities p are modeled using a linear model with logistic
sigmoid function [37].

IV. EXPERIMENTAL RESULTS

We now demonstrate results of the proposed motion analysis
framework in the context of long-term FMT treatment. We first
present the captured datasets (IV-A) and evaluate the ability
of the reference trajectory model to predict realistic healthy
trajectories under varied spatial conditions (IV-B). We then
explore the importance of kinematic features and tune the
selection of best features (IV-C). Then, we describe the results
of our main contributions in Sec. IV-D, where we illustrate the
suitability of our model to assess changes in motor function
over long-term treatment and analyze the results per subject
group and disease. We also test how the model responds to
individual features (IV-E) and demonstrate the robustness of
our model to substantial setup variations (IV-F).
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TABLE I
DEMOGRAPHICS OF PATIENT GROUP AND INFORMATION ABOUT INVOLVED TREATMENT SESSIONS

Name Disease Affected Time Treatment duration Drumming speed Therapists’ Scores
(years) (weeks) (hpm)

A B C D A B C D A B C D

S5 S Left 2 – 4 19 20 – 97 96 102 – 3 1 1
S6 S Right 14 1 3 18 20 168 185 139 112 4 3 1 1
S7 S Right 12 6 7 14 17 124 146 116 140 4 4 1 1
S8 S Left 2 1 2 19 20 73 92 118 118 4 3 0 0
S10 S Left 1 1 2 18 20 66 71 105 113 2 2 0 0
S15 PD Right 9 1 4 12 20 128 161 156 220 5 5 3 4
S16 PD Left, Right 10 1 – – 20 114 – – 134 4 – – 2
S18 PD Left 5 2 5 18 19 99 133 154 150 2 1 1 1
S19 PD Right 12 1 2 19 20 134 116 92 113 2 3 1 1

Patients with stroke (S) or Parkinson’s disease (PD), more affected left or right body side and time since stroke or onset, in sessions A to D, described
by treatment duration in weeks, drumming speed in hits per minute (hpm) and therapists’ scores for total improvement of bodily functions. The
symbol – indicates missing sessions that did not fit the selection criteria described in Sec. IV-A1.

A. Data Acquisition

We captured 3 datasets to investigate the influence of
impairment, number of treatment, and spatial distribution of
instrumentation in bi-manual repetitive drumming.

1) Patient group (PG): We recorded 20 subjects (of which
11 female) in 5 to 20 FMT sessions of approx. 20 min. length
under real-life conditions (cf. Fig. 5a). 10 of these patients
were diagnosed with Parkinson’s disease (PD), 10 were stroke
survivors (S). The motion data was acquired weekly with
varying setups of instrumentation. Table I presents an overview
of data used in this paper, more patient information is given
as in [9].

For the analysis, robustly tracked session parts in a 2-drum-
setup, performed in a self-chosen speed, with the desired
drumming-pattern and with comparable drum sticks were
selected in 2 to 4 sessions (cf. Table I, A to D). Data was
excluded, if (i) the patients were repeatedly recorded with
unstable skeletal tracking, (ii) did not perform the exercise
correctly in the required number of sessions and with the
minimal number of ten motion cycles and (iii) the subjects’
age was below 18 years. In the selected drumming samples,
each hand is alternating between the center drum and the one
outer drum, which is located at the corresponding body side
(cf. Fig. 9). Two skilled therapists with a working and teaching
experience of at least ten years in FMT used our self-written
software [38] (based on the Kinect for Windows SDK 1.5
Version) to record the motion data and rated the drumming
performance visually on a FMT-specific 5-point scale.

2) Healthy group (HG): The motion data of 10 healthy
subjects (of which 3 female, 1 left-handed, mean±SD age of
31.4±2.54 years) was acquired by the Kinect for Windows
SDK 2.0 under lab conditions (cf. Fig. 5b) in 3 setups of
instrumentation with the same drumming pattern as in the PG
group in a drumming speed of 122-126 hits per minute (hpm).
The recording process was conducted with a self-written
software and was initialized and ended by the instructor.

3) Controlled setup variation (SV): Data of 1 healthy
subject (female, 31 years) was acquired by the the Kinect for
Windows SDK 2.0 with controlled variation of the positions of
the instruments (cf. Fig. 5c) with the same drumming pattern

TABLE II
MEAN AND STANDARD DEVIATION (SD) IN CM AND EXPLAINED

VARIANCE OF REFERENCE MODEL IN DEPENDANCE OF NO. OF PCA
COMPONENTS AND SUBJECT GROUP. BEST RESULTS DENOTED IN BOLD.

No. PCA Comp. 2 3 4 5 6 7

Patient Group (PG)
Left Hand

Mean [cm] 5.60 3.03 3.00 2.99 2.98 3.01
SD [cm] 3.45 2.25 2.24 2.28 2.28 2.30

Right Hand

Mean [cm] 4.47 3.04 3.04 3.00 3.01 3.01
SD [cm] 2.89 2.36 2.35 2.35 2.34 2.34

Healthy Group (HG)
Left Hand

Mean [cm] 2.90 2.20 2.20 2.21 2.21 2.20
SD [cm] 2.23 1.91 1.91 1.94 1.94 1.94

Right Hand

Mean [cm] 2.58 2.11 2.10 2.10 2.11 2.11
SD [cm] 1.96 1.82 1.81 1.82 1.83 1.83

Explained Variance

Left Hand [%] 0.966 0.985 0.990 0.992 0.994 0.996
Right Hand [%] 0.966 0.984 0.990 0.993 0.995 0.996

as in the PG group in a drumming speed of 122 hpm. The
position of the chair and the XZ-position of the center drum
was fixed, the positions of the outer cymbals were changed as
displayed in Fig. 6.

B. Validation of Reference Trajectory Model

We can use the reference model (Sec. III-D) to predict a
reference trajectory for real trajectories of impaired or healthy
subjects. In order to measure the precision of this model
we calculated the average Euclidean distance and standard
deviation (SD) in R3 over all trajectories of the PG and HG
and the explained variance ratio depending on the numbers of
used PCA components and separately for joints of the left and
right body side. Table II reveals the results.

As expected, the healthy trajectories are closer to the
reference trajectories (lower average distance and SD): while
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healthy drumming contains style variations, impaired drum-
ming apparently contains aberrations from the healthy refer-
ence due to the disease. Differences between left and right
hand are negligible in PG, presumably because the body
side affected by the disease is balanced in our dataset, cf.
Table I. With increasing number of PCA components, the
model overfits to peculiarities of the training set (here: SV),
which results in higher error of the model on the HG and PG
dataset. Therefore, we select K = 4 PCA components.

C. Feature Tuning and Selection

We further optimize the probabilistic model that computes
the treatment effect (cf. III-F) by performing leave-one-
subject-out cross validation (LOOCV) using Scikit-learn [39].
This simulates performance of the model on a subject that was
not used for training, which is repeated and averaged over all
subjects to obtain an expected model accuracy. We first tested
different variants per feature group (VAR vs MAD vs MED,
cf. III-E): MAD and MED achieved the best accuracy of 0.88.
Speed profile features worked best when using peak velocity
(III-E3) instead of using the Gaussian fit. Each of our three
kinematic features actually provide several sub-features (e.g.,
deviation of speed at forward and backward reach, cf. III-E).
To further reduce the number of features, we systematically
select one sub-feature in each of the three feature groups. The
variability around the end of reaches and the deviation from
the speed profile in the even (reversal) reaches contributed the
most per group. The importance of variability around the end
of reaches coincides with findings of [33] for stroke survivors.
The feature tuning and selection process leaves us with an
optimal feature set of two scalars per feature (= 6 features in
total) that we collect in Fbest.

D. Analysis of Treatment Effect

The classification model from Sec. IV-C, which was trained
on the best sub-feature combination Fbest of both body sides
from early treatment sessions, was used to predict probabilities
for later treatment sessions for the patient group (PG). Please
note that the classification is based on noisy class labels,
because we used no information about the impaired body
side of the patients in the training procedure and conducted
no medical assessment of the healthy group (HG) about the
quality of motor function.

We compare these model predictions with therapists’ rat-
ings. Two experienced FMT therapists described the total co-
ordination of subjects, including motor function of both hands,
with a score from 0-“no disability” to 5-“severe disability”, for
the full treatment session. The focus of the human evaluation
can be followed in [8], the ratings are displayed in Table I.
Fig. 7 shows the probabilities p(y = PG∣Fbest) of subjects to
be labeled as belonging to the disabled PG over the duration
of treatment and the corresponding ratings of the therapists.
Thus, each data point per subject represents a treatment
session. The therapists’ ratings and model probabilities mostly
match and show similar trends. This is remarkable since the
model was never trained/calibrated on the therapists’ ratings
and, on top of that, the therapists rated the full treatment

TABLE III
IMPROVEMENTS OF MOTOR FUNCTION FROM DIFFERENCES BETWEEN

1ST AND LAST SESSION: BOTH THE THERAPIST AND OUR MODEL AGREE
IN MOST CASES.

Name Disease Therapists’ Scores Probabilities Both
Diff. Improved Diff. Improved agree?

S5 S 2.0 3 0.10 7 –
S6 S 3.0 3 0.63 3 3
S7 S 3.0 3 0.18 7 –
S8 S 4.0 3 0.48 3 3
S10 S 2.0 3 0.64 3 3
S15 PD 1.0 7 -0.52 7 3
S16 PD 2.0 3 0.55 3 3
S18 PD 1.0 7 -0.84 7 3
S19 PD 1.0 7 0.01 7 3

TABLE IV
ACCURACY OF CLASSIFICATION MODEL DEPENDING ON SELECTED BEST

SUB-FEATURES

Speed Consistency w. Model Variability Accuracy

3 3 3 0.88

3 0.85

3 0.77

3 0.77

session (about 20 minutes) while our method only analyzes
a single exercise of that same session (20 reaches during at
most 20 seconds of motion). The therapists rated the total
coordination of all S patients as improved. In agreement,
we see that the probabilities decrease over the duration of
treatment and seem to converge to the range of the HG (cf.
Fig. 7a), which could be a signal of recovery. In PD (cf.
Fig. 7b), except for subject 16, a converse development in
the probabilities can be observed, suggesting a deterioration
of motor function over the treatment. This may correspond to
the usual course of PD. Additionally, the model does not fully
agree with the therapists, who saw a small improvement. A
reason could be that the model looks at kinematic features on
the hand joints while a therapist considers additional criteria
(e.g., total coordination, breathing, cf. [8]), thus, depending
on the disease, model and humans inherently focused on
different functions. In both groups, some probabilities fluctuate
per subject, which could be a consequence of, e.g., daily
condition, fatigue, or medication. The HG was not rated by the
therapists, but the probabilities are clearly smaller than 0.5 (cf.
Fig. 7c), hence would be labeled correctly as “healthy”. The
variability within the HG can be seen as usual phenomenon in
an untrained subject group, which perform the desired exercise
for the first time.

We now compare if the model and the therapist both
detect an improvement after treatment by defining a positive
effect when: (i) for human scores when they improve by at
least 2, (ii) for classification probabilities when they show an
improvement of at least 0.2. Table III shows the results. The
therapists and our model agree for S subjects 6, 8, 10 and in
all PD subjects. In the majority of PD subjects the therapists
assessed only cautious improvements, which were too low to



2168-2194 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2018.2848103, IEEE Journal of
Biomedical and Health Informatics

JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. X, NO. X, X 2018 8

0.0
0.2
0.4
0.6
0.8
1.0

p(
y

=
PG

|F
be

st
)

0.0
1.0
2.0
3.0
4.0
5.0

th
er

ap
ist

s' 
sc

or
es

model
S5
S6
S7

S8
S10
 

therapist
S5
S6
S7

S8
S10
 

(a) Stroke survivors

0.0
0.2
0.4
0.6
0.8
1.0

p(
y

=
PG

|F
be

st
)

0.0
1.0
2.0
3.0
4.0
5.0

th
er

ap
ist

s' 
sc

or
es

model
S15
S16
S18

S19
therapist
S15
S16
S18

S19

(b) Subjects with Parkinson’s disease

0.0
0.2
0.4
0.6
0.8
1.0

p(
y

=
PG

|F
be

st
)

model
S21
S22
S23

S24
S25
S26

S28
S29

S31
S32

(c) Healthy subjects

Fig. 7. Estimation of treatment effect per patient group: Probabilities of subjects of being labeled as belonging to disabled patient group (PG) over the
duration of treatment (solid) and corresponding ratings of the therapists (dotted). For better readability, the time between sessions is uniformly scaled.
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Fig. 8. Estimation of treatment effect for different aspects of motor function: Probabilities of subjects of being labeled as belonging to disabled patient group
(PG) over the duration of treatment, whereas model was trained with single features. “speed” stands for the speed profile in the even (reversal) reaches,
“consistency w. model” and “variability” for the variability around the end of reaches both for predicted and real trajectories, Fbest for the best sub-features.
For better readability, the time between sessions is uniformly scaled.

count for a positive treatment effect and leads to this high
agreement. In the S group, the motor function of subjects 5
and 7 were not evaluated as “improved” by our model as the
differences in probabilities are not high enough, but a tendency
is clearly there.

E. Quantification of Different Aspects of Motor Function

The model evaluated above combines all three kinematic
features to produce a single output p(y = PG∣Fbest). We
can also train the model on just a single kinematic feature in
order to assess if that feature responds to different aspects of a
patient’s motor function, which might provide further insights
for a therapist. Table IV shows classification accuracies ob-
tained for models trained on a single feature (again, computed
from LOOCV). The features are informative on their own,
especially “speed”, but cannot achieve accuracy of a model
trained on all three features. More importantly, models trained
on singular features respond differently to different patients,
which is what is visualized in Fig. 8. For example, S8 is
able to quite precisely reproduce motion (also illustrated in
Fig. 4c, top row) in session C after 19 weeks of treatment,
which is depicted in low probabilities for the feature describing
the variability around the ends of real reaches (“variability”
in Fig. 8, 3rd data point belonging to S8). However, the
higher probabilities concerning the variability around the ends
of the predicted reaches (“consistency w. model” in Fig. 8)

indicate, that the executed motion still differs substantially
from the predicted motion of a healthy subject (cf. Fig. 4c,
middle and bottom row), thus is repeatedly performed in a
not optimal, “unhealthy” way. In summary, while sub-features
might reveal such different syndromes in individual patients,
only a combination of all features characterizes treatment
effect robustly.

F. Validation of Model Invariance to Setup Changes

To ensure that our model is invariant to setup changes, we
recorded two additional healthy subjects in two substantially
different camera setups while they are performing 4 different
drumming exercises (cf. Fig. 9). Subjects as well as camera
setups were not part of any training set. Fig. 10 shows the
probabilities of subjects to be labeled as belonging to the
disabled PG in both camera-setups. The probabilities remain
unaffected in both setups, thus were not influenced by the
variation of the camera-setup. Both subjects are correctly
classified as “healthy” with probabilities that are clearly
smaller than 0.5. Although the exercises were also changed
and demand different motion strategies from the subjects, the
probabilities stay stable. This indicates a versed, well adapted
motor coordination in the healthy subjects and harmonizes
with the low inter-subject variability in healthy subjects in
the HG as depicted in Fig. 4b.
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(a) Camera-setup 1, exercise 1 (b) Camera-setup 2, exercise 2

(c) Camera-setup 1, exercise 3 (d) Camera-setup 2, exercise 4

Fig. 9. Representative images acquired by Kinect sensor in dataset with
subjects 33 (top row) and 34 (bottom row) drumming in 2 camera-setups
with 4 exercises each.

V. DISCUSSION AND CONCLUSION

In this paper, we address the problem of assessing motor
function in long-term rehabilitation with varied spatial setups
and without using subjective therapists’ scores. We describe
a framework to process, normalize, and compare unrestrained
trajectories located in 3d and recorded from uncontrolled con-
ditions. Clinical studies usually implicate strongly controlled
and thus restricted circumstances with extensive technical
assistance and expensive equipment. On the contrary, our
method allows low-cost data collection, analysis of real-life
motion recordings, and is more robust against user negligence.

We propose and evaluate a reference trajectory model
to predict healthy hand trajectories from variable 3d joint
positions of variable given trajectories. We demonstrate the
robustness of our model to substantial setup variations. So it
allows the comparison of movements which were recorded
from uncontrolled conditions, as they often occur in long-
term, real-life treatment. By considering left and right joints
separately, it is also suitable for trajectory synthesis in case of
diseases that affect whole body motion, without a necessary
determination of, e.g., an affected hand or body side. Similar
to other trajectory models, ours can only learn and predict
variances contained in the healthy, controlled training data,
namely varied motion target locations. Currently it lacks the
ability to predict speed-relevant features like overall movement
duration in dependance on different given or self-paced speeds,
peak speed, and similar attributes. Decreased speed in relation
to a healthy control group [33] is an interesting attribute of
impairment and would be helpful to monitor in the trajectory
model. Given sufficient data, our framework also allows learn-
ing effects like these via the healthy reference model.

Currently, we account for hand motion only, both within the
trajectory model and for the kinematic features. The wrist and
hand joints prepare and guide the movement in drumming [40]
as in reaching. However, shoulder, elbow, and torso joints
also contribute to reaching tasks [7], with increased trunk
displacement for stroke patients in comparison to healthy
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Fig. 10. Estimation of treatment effect depending on setup changes: Prob-
abilities of subjects of being labeled as belonging to disabled patient group
(PG) in 2 different camera setups with 4 different exercises each. The similar
probabilities indicate that our processing and reference trajectory model
successfully eliminate the influence of setup variations on motion.

controls as found by [33]. Hence, we plan the integration of
additional joints into the framework as future work.

We motivated and evaluated the influence of different kine-
matic features to serve as indicators for impairment over long-
term treatment. We could confirm that end-point positions
are more widely distributed for impaired subjects, as stated
by [33]. Additionally, larger deviations from a symmetrically
bell-shaped velocity profile in forward and especially reversal
movements were pronounced in the disabled group. A shifting
of the peak velocity outside of the mid-time between start and
end point of movement is usually associated with requirements
for speed and accuracy as described by Fitts’s law [41]: The
peak velocity occurs earlier if the movement needs to be
performed very accurately, e.g., towards a small target size,
and it occurs later if the subject has to move very fast. We
assume that the requirements for accuracy are higher for
disabled subjects, also with a comparable target size in a
healthy and patient group. In FMT, the therapists continually
urge the patients to carry out new drum movements that go
beyond their current motor skills. Due to their impairment they
are more challenged to hit the target accurately and adapt their
movements strategies accordingly. A second possible reason
could be that the subjects were especially rushed in the reversal
motion to prepare the next forward motion in time and put
more emphasis on the speed of their movements. Third, the
requirements and strategies in unrestrained drumming could
be generally different for forward and backward motion, e.g.,
as observed for upward and downward motion by Atkeson
and Hollerbach [30]. Future research needs to investigate the
relationship between impairment, movement direction, and
requirement for accuracy and speed in reaching and repetitive
drumming. We will focus on the extension of the amount
of kinematic features and application to our patient groups,
e.g., hand path length and initial movement direction error as
investigated by [13]. We can easily integrate these features as
additional indicators for the evaluation of the treatment effect.

We presented a probabilistic model which allows statements
about long-term progression of impaired motor function in re-
lation to a healthy control group and compared it to therapists’
scores. To the best of our knowledge, this paper is the first to
reveal an objective analysis of therapy effect in FMT and for
the first time investigates long-term changes in drumming from
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real-life treatment sessions. The distribution of the kinematic
features per subject group and the accordance between subject-
related improvements in model probabilities and human ratings
indicate that the proposed framework is appropriate to evaluate
motor function of patients after stroke and with Parkinson’s
disease. Hence, our model can be helpful to assist therapists
in the objective assessment of therapy success or encourage
changes in treatment if used concomitantly to the therapy.
Arguably, the comparison of our quantitative model with the
therapists’ scores in Sec. IV-D demands further investigation
and discussion, because the therapists’ ratings are given for
the whole treatment session and for total movement, not
only hand motion. And, while our model does not use any
subjective human scores, this comparison does. In the future,
additional methods for objective treatment estimation may be
worth implementing. However, we think a basic accordance
with human scores of multiple, experienced raters will support
clinical appliance of our model. In this study, the sample size
of the subject groups and the number of events per variable
(EPV) is too small to produce stable estimates of the treatment
effect. If, e.g., 4 out of 9 patients experience a treatment effect
(cf. improved probabilities in Table III), the EPV of the initial
model with 16 features is only 0.25, but should be 10 to
15 EPV following [42].

So, in the future, a more detailed study would be a profit
for the validation of the model and FMT in general: (i) with a
higher amount of involved patients and sessions, (ii) joint-
wise scored motor function by different therapists, (iii) a
physical examination of the patients by specialists to compare
bodily functions with kinematic features, and (iv) comparative
measurements with a more precise movement sensor (e.g.,
a Vicon system) to evaluate the suitability of the Kinect
sensor for tracking reaching and drumming motion and to
validate the model predictions. Especially the involvement of
more treatment sessions as well as metadata like medication
or parallel rehabilitation programs could be helpful to find
reasons for strong fluctuations in model probabilities. We hope
that motion quantification is increasingly applied in real-life
rehabilitation, also outside of clinical studies, and that the
methods of this paper drive this development forward in the
analysis of drumming and reaching movements.
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