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Figure 1: We combine real world surface data of an elbow �exion motion (a) with biomechanical simulation in OpenSIM (b) to
a hybdrid surfacemodel predicting the shape deformation from simulatedmuscle data, here shownwith full biceps activation
(c) and with fully activated triceps (d).

ABSTRACT
Statistical body shape modelling can be used to realistically gen-
erate complex muscle deformation e�ects on the skin. However,
purely data-driven models still ignore the biomechanical nature of
surface deformations. Reliable anatomically and biomechanically
consistent predictions are barely possible. Our research aims at
combining the previously separate paradigms – data-driven and
simulation-driven 3D surface modeling – to a hybrid body shape
model. Our �rst goal consists of synthesizing the skin surface from
simulated biomechanical data. As a �rst step in this direction we
show preliminary results of our model of an elbow �exion mo-
tion with separate biceps and triceps muscle bulging that exhibits
believable muscular deformation e�ects on the skin surface while
enabling singular control over speci�c muscle regions. Our model is
separately controllable in shape and pose and extensible to a wider
range of human body shapes, joint motion and muscle regions.
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1 MOTIVATION
Deformation of the skin is caused by a complex interplay of mus-
cles, tendons, fat and connective tissue during joint motion. Muscle
shape can be a�ected by various conditions including external load,
the person’s physical constitution as well as bio-physical parame-
ters like the muscle’s moment arm, �ber length and the velocity of
length change, which in turn depend on the joint angle. The bio-
logical mechanisms are well-studied in the �eld of Biomechanics
where the simulation of muscle forces and other biomechanical
data (e.g. joint reaction forces, tendon and ligament forces, damping
forces etc.) is successfully achieved with the help of muscle mod-
els, the equations of motions and optimization techniques [Enoka
2015], yet without providing any notion of volume or muscle sur-
face. The anatomically accurate modelling of the muscles’ surface,
however, requires computationally demanding physics-based simu-
lation models [Lee et al. 2012]. An alternative approach is based on
learning deformations from multiple subjects [Hasler et al. 2009],
in multiple poses [Anguelov et al. 2005], or even from multiple ex-
ternal forces that result in pronounced muscle deformations [Neu-
mann et al. 2013]. These models tend to produce very convincing,
�ne-scale deformation e�ects, yet lack bio-physical justi�cation.

Our approach combines the advantages of statistical body shape
modelling with the physical accuracy of biomechanically inspired
body models by modelling the correlation between surface data and
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biomechanical data. Our model is able to synthesize the skin sur-
face based on the force magnitude of speci�c muscle �ber strands,
like for instance biceps longus or triceps medialis, and thus gives
control over the muscle shape. A secondary purpose of the model
encompasses assumptions about distinct muscle activation patterns
without using any sensory devices for muscle activation measure-
ments. As a result, the range of applications opens up from computer
graphics to applications in therapy, rehabilitation, exoskeleton con-
trol and sports.

2 METHOD
Our proposed model extends the SCAPE model by Anguelov et al.
[Anguelov et al. 2005]. According to SCAPE, it uses deformation
gradients for modelling body part rotation induced (Q) and Shape
induced deformation components (S) separately. First, pose-based
deformationQ is learned based on twist vectors containing the body
part rotations R as a prestep. Secondly, we subtract the pose model
from the input data. The residuals form the shape-speci�c defor-
mation component S , containing the di�erence in muscle shaping
e�ects under increasing external loads. Principal Component Re-
gression is our method of choice for relating the biomechanical data
with the shape deformation, whereby an intermediate Principal
Component Analysis step helps to prevent over�tting by selecting
only the most meaningful PCA components for linear regression.
By this means, we con�gure a semantic model that – provided with
pose speci�c parameters (6 degrees of freedom for the shoulder
and elbow joint) and a speci�c muscle activity pattern in the form
of a vector of muscle activities as inputs – delivers the according
deformation gradients to reconstruct the resulting surface.

For a proof of concept, we use the dataset provided by [Neumann
et al. 2013] consisting of detailed surface meshes of the shoulder-
arm-area in motion and concentrated on an elbow �exion motion
(ranging from un�exed pose to maximum �exion and back), per-
formed by a male subject under varied external loads. The focus
was limited to biceps and triceps – the most prominent agonist-
antagonist pair of muscles in the upper arm. We then feed the
captured data into OpenSIM [Delp et al. 2007], an open source
framework for biomechanical body modeling and simulation devel-
oped by the university of Stanford with a wide range of applications
in the �eld of Biomechanical and clinical research [Hicks et al. 2015].
Fig. 2 shows the strong coherence between the weight curves of
the First Principle Component of body surface deformation with
the simulated force curves of biceps longus over all elbow �exion
repetitions with barbell weights increasing from 0 to 14 kg.

3 DISCUSSION AND FUTUREWORK
The described approach facilitates the synthesis of skin shape from a
given state of muscle activity and pose. In contrast to previous work
in the �eld of statistical modelling, our model enables CG artists to
animate the speci�c muscle activation pattern e.g. �ne-scale muscle
twitches. As shown in Fig. 1 as well as in the accompanying video,
the results exhibit plausible muscle e�ects in arm shape. Our model
allows for separate control over pose and shape.

With a limited training database of just one type of motion, our
preliminary model remains fairly limited, resulting not just in a
restricted pose model but also in some inaccuracies in the shape

Figure 2: The deformation change in the biceps region along
the axis of the First Principal Component for several se-
quences of elbow �exion motion with increasing weights
(blue) correlates well with muscle forces simulated with
OpenSIM’s Static Optimization tool (red).

model’s triceps region, since the triceps’ activation is particulary
low - just a fraction of biceps activation - during elbow �exion. As
antagonistic muscle, it acts as joint stabilizer and thus co-contracts
slightly with increasing biceps activation [Enoka 2015]. However,
in biomechanical simulation, which relies on energy optimization,
the triceps’ force is estimated to decrease with increasing load.
The indispensible inversion step of the triceps muscle data could be
prevented by extending the model with motion data of further, more
triceps intensive exercises. In general, training on a larger dataset
including several subjects, more body parts and, especially, covering
a wider range of human motion, will improve the generalisability,
both in terms of pose and shape.

Our preliminary model was trained under the assumption of
quasi-static motion. However, utilizing the muscle model’s force-
length-velocity curves during simulation, our approach facilitates
a dynamic muscle behavior, provided that the training database is
extended by motion sequences with varied timing. Future work also
encompasses the replacement of the currently manual procedure
for muscle region de�nition with an automatic process that isolates
and assigns meaningful muscle regions in a data-driven way.

Other types of biomechanical data can as well be included into
the shape regression model, for instance joint reaction forces, mus-
cle moment arms or �ber length, making it a potential tool for
muscle surface-based predictions of biomechanical data relevant
for applications in clinical disciplines.
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